|
Ukázky z GeoGebry (Examples of kinematic motions) (DG III)
The motion is given by paths τ_A and τ_B of two points A and B - GeoGebra Dynamický pracovní list
The motion is given by paths τ_A and τ_B of two points A and B
Petra Surynkova, Vytvořeno programem GeoGebra |
The motion is given by envelopes (m) and (n) of two curves m and n - GeoGebra Dynamický pracovní list
The motion is given by envelopes (m) and (n) of two curves m and n
Petra Surynkova, Vytvořeno programem GeoGebra |
The motion is given by envelope (m) of curve m and path τ_A of point - GeoGebra Dynamický pracovní list
The motion is given by envelope (m) of curve m and path τ_A of point
Petra Surynkova, Vytvořeno programem GeoGebra |
The motion is given by envelopes (m) and (n) of two curves m and n which degenerate into points - GeoGebra Dynamický pracovní list
The motion is given by envelopes (m) and (n) of two curves m and n which degenerate into points
Petra Surynkova, Vytvořeno programem GeoGebra |
The motion is given by path τ_A of point A and envelope (m) of curve m which degenerate into point - GeoGebra Dynamický pracovní list
The motion is given by path τ_A of point A and envelope (m) of curve m which degenerate into point
Petra Surynkova, Vytvořeno programem GeoGebra |
Cycloidal motion - GeoGebra Dynamický pracovní list
Cycloidal motion
Petra Surynkova, Vytvořeno programem GeoGebra |
Cycloidal motion with parameter t - GeoGebra Dynamický pracovní list
Cycloidal motion with parameter t
Petra Surynkova, Vytvořeno programem GeoGebra |
Epicycloidal motion with parameter Ω - GeoGebra Dynamický pracovní list
Epicycloidal motion with parameter Ω
Petra Surynkova, Vytvořeno programem GeoGebra |
Epicycloidal motion with parameter Ω - GeoGebra Dynamický pracovní list
Epicycloidal motion with parameter Ω
Petra Surynkova, Vytvořeno programem GeoGebra |
Hypocycloidal motion with parameter Ω - GeoGebra Dynamický pracovní list
Hypocycloidal motion with parameter Ω
Petra Surynkova, Vytvořeno programem GeoGebra |
Hypocycloidal motion with parameter Ω - GeoGebra Dynamický pracovní list
Hypocycloidal motion with parameter Ω
Petra Surynkova, Vytvořeno programem GeoGebra |
Involute motion - GeoGebra Dynamický pracovní list
Involute motion
Petra Surynkova, Vytvořeno programem GeoGebra |
Elliptic motion - GeoGebra Dynamický pracovní list
Elliptic motion
Petra Surynkova, Vytvořeno programem GeoGebra |
Elliptic motion with parameter Ω - GeoGebra Dynamický pracovní list
Elliptic motion with parameter Ω
Petra Surynkova, Vytvořeno programem GeoGebra |
Elliptic motion defined by paths τ_A and τ_B of two points A and B - GeoGebra Dynamický pracovní list
Elliptic motion defined by paths τ_A and τ_B of two points A and B
Petra Surynkova, Vytvořeno programem GeoGebra |
Cardioid motion - GeoGebra Dynamický pracovní list
Cardioid motion
Petra Surynkova, Vytvořeno programem GeoGebra |
Cardioid motion defined by envelopes (m) and (n) of two lines m and n which degenerate into points - GeoGebra Dynamický pracovní list
Cardioid motion defined by envelopes (m) and (n) of two lines m and n which degenerate into points
Petra Surynkova, Vytvořeno programem GeoGebra |
Conchoid motion (the given path is a straight line) - GeoGebra Dynamický pracovní list
Conchoid motion (the given path is a straight line)
Petra Surynkova, Vytvořeno programem GeoGebra |
Conchoid motion (the given path is a circle) - GeoGebra Dynamický pracovní list
Conchoid motion (the given path is a circle)
Petra Surynkova, Vytvořeno programem GeoGebra |
|
|